	Higher Level					華
Unit 1a: Angles						
Developing	distinguish between acute, obtuse, reflex and right angles					
	use one lower-case letter or three upper-case letters to represent an angle, for example x or $A B C$					
	understand and draw lines that are parallel					
	understand that two lines that are perpendicular are at 90°					
	identify lines that are perpendicular					
	draw a perpendicular line in a diagram					
	use geometrical language					
	use letters to identify points and lines					
	recognise that, for example, in a rectangle $A B C D$ the points A, B, C and D go around in order					
	recognise reflection symmetry of 2D shapes					
	understand line symmetry					
	identify lines of symmetry on a shape or diagram					
	draw lines of symmetry on a shape or diagram					
	draw or complete a diagram with a given number of lines of symmetry					
	recognise rotational symmetry of 2D shapes					
	identify the order of rotational symmetry on a shape or diagram					
	draw or complete a diagram with rotational symmetry					
Securing	identify and draw lines of symmetry on a Cartesian grid					
	identify the order of rotational symmetry of shapes on a Cartesian grid					
	work out the size of missing angles at a point					
	work out the size of missing angles at a point on a straight line					
	know that vertically opposite angles are equal					
	estimate the size of an angle in degrees					
	justify an answer with explanations such as 'angles on a straight line', etc.					
	understand and use the angle properties of parallel lines					
	recall and use the terms alternate angles and corresponding angles					
	work out missing angles using properties of alternate angles, corresponding angles and interior angles					
	understand the consequent properties of parallelograms					
	understand the proof that the angle sum of a triangle is 180°					
	understand the proof that the exterior angle of a triangle is equal to the sum of the interior angles at the other two vertices					
	use angle properties of equilateral, isosceles and right-angled triangles					
	use the fact that the angle sum of a quadrilateral is 360°					
	calculate and use the sums of interior angles of polygons					
	recognise and name regular polygons: pentagons, hexagons, octagons and decagons					

	use the angle sum of irregular polygons				
	calculate and use the angles of regular polygons use the fact that the sum of the interior angles of an n-sided polygon is $180(n-2)^{\circ}$				
	use the fact that the sum of the exterior angles of any polygon is 360°				
	use the relationship interior angle + exterior angle $=180^{\circ}$				
	use the sum of the interior angles of a triangle to deduce the sum of the interior angles of any polygon.				

							\#
Unit 1b: Scale diagrams							
	Developing	use and interpret maps and scale drawings					
		use a scale on a map to work out an actual length					
		use a scale with an actual length to work out a length on a map					
	Securing	construct scale drawings					
		use scale to estimate a length, for example use the height of a man to estimate the height of a building where both are shown in a scale drawing					
		work out a scale from a scale drawing given additional info.					

					管		\#
Unit 1c: Bearings							
		use bearings to specify direction					
	Developing	recall and use the eight points of the compass ($N, N E, E, S E$, S, SW, W, NW) and their equivalent three-figure bearings					
		use three-figure bearings to specify direction					
		mark points on a diagram given the bearing from another point					
	Securing	draw a bearing between points on a map or scale drawing					
	Securing	measure the bearing of a point from another given point					
		work out the bearing of a point from another given point					
	Extending	work out the bearing to return to a point, given the bearing to leave that point.					

						¢	-
Unit 2: Algebra							
		use notation and symbols correctly					
	Developing	understand that letter symbols represent definite unknown numbers in equations, defined quantities or variables in formulae, and in functions they define new expressions or quantities by referring to known quantities.					
	Securing	understand phrases such as 'form an equation', 'use a formula', 'write down a term', 'write an expression' and 'prove an identity' when answering a question					
		recognise that, for example, $5 x+1=16$ is an equation					
		recognise that, for example, $V=I R$ is a formula					
		recognise that $x+3$ is an expression					
		recognise that $(x+2)^{2}=x^{2}+4 x+4$ is an identity					
		recognise that $2 x+5<16$ is an inequality					
		write an expression					
		know the meaning of the word 'factor' for both numerical work and algebraic work					
		understand that algebra can be used to generalise the laws of arithmetic					
		manipulate an expression by collecting like terms					
		write expressions to solve problems					
		write expressions using squares and cubes					
		factorise algebraic expressions by taking out common factors					
		multiply two linear expressions, such as $(x \pm a)(x \pm b)$ and $(c x \pm a)(d x \pm b)$, for example $(2 x+3)(3 x-4)$					
		multiply a single term over a bracket, for example, $a(b+c)=a b+a c$					
		know the meaning of and be able to simplify, for example $3 x-2+4(x+5)$					
		know the meaning of and be able to factorise, for example $3 x^{2} y-9 y$ or $4 x^{2}+6 x y$					
	Extending	factorise quadratic expressions using the sum and product method, or by inspection (FOIL)					
		factorise quadratics of the form $x^{2}+b x+c$					
		factorise expressions written as the difference of two squares of the form $x^{2}-a^{2}$					
		use the index laws for multiplication and division of integer powers					
		simplify algebraic expressions, for example by cancelling common factors in fractions or using index laws					

					-		
Unit 4: Coordinates and linear graphs							
	Developing	show step-by-step deduction in solving a geometrical problem					
		complete tables of values for straight-line graphs					
		recognise that equations of the form $y=m x+c$ correspond to straight-line graphs in the coordinate plane with gradient m and y-intercept at ($0, C$)					
	Securing	draw graphs of functions in which y is given explicitly or implicitly in terms of x					
		work out the gradient and the intersection with the axes					
	Extending	calculate the gradient of a given straight-line given two points or from an equation					
		manipulate the equations of straight lines so that it is possible to tell whether lines are parallel or not					
		work out the equation of a line, given two points on the line or given one point and the gradient					
		work out the gradients of lines that are parallel and perpendicular to a given line					
		show that two lines are parallel or perpendicular using gradients					
		manipulate the equations of straight lines so that it is possible to tell whether or not lines are perpendicular					
		know that the gradients of perpendicular lines are the negative reciprocal of each other					

					¢		\#
Unit 5: Rounding							
	Developing	perform money calculations, writing answers using the correct notation					
		round numbers to a specified number of decimal places					
		round numbers to a specified number of significant figures					
		interpret scales on a range of measuring instruments, including those for time, temperature and mass, reading from the scale or marking a point on a scale to show a stated value					
		know that measurements using real numbers depend on the choice of unit					
	Securing	use inequality notation to specify error intervals due to truncation or rounding					
		recognise that measurements given to the nearest whole unit may be inaccurate by up to one half in either direction					
		write down the maximum or minimum figure for a value rounded to a given accuracy					
	Extending	combine upper or lower bounds appropriately to achieve an overall maximum or minimum for a situation					
		work with practical problems involving bounds including in statistics. For example, finding the midpoint of a class interval, such as $10<t \leqslant 20$, in order to estimate a mean					

HALF TERM

						䘡	-
Unit 6: Collecting and representing data							
$\frac{\frac{\ddots}{6}}{\frac{\sigma}{E}}$	Developing	Interpret and construct tables, charts and diagrams including, for categorical data: frequency tables, bar charts (composite, dual), pie charts, pictograms, vertical line charts for ungrouped discrete numerical data					
		For the above named diagrams, understand which of them are appropriate for different types of data					
		interpret any of the types of diagram					
		decide whether data is qualitative, discrete or continuous and use this decision to make sound judgements in choosing suitable diagrams for the data					
		understand the difference between grouped and ungrouped data					
		understand the advantages and disadvantages of grouping data					
		distinguish between primary and secondary data					
		use lists, tables or diagrams to find values for the above measures					
		find the mean for a discrete frequency distribution					
		find the median for a discrete frequency distribution					
		find the mode or modal class for frequency distributions					
	Securing	calculate an estimate of the mean for a grouped frequency distribution, knowing why it is an estimate					
		find the interval containing the median for a grouped frequency distribution					
		choose an appropriate measure to be the 'average', according to the nature of the data					
		identify outliers					
		find patterns in data that may lead to a conclusion being drawn					
		look for unusual data values such as a value that does not fit an otherwise good correlation					
		design and use two-way tables					
		complete a two-way table from given information					
		construct suitable diagrams for grouped discrete and continuous data					
		interpret diagrams for grouped discrete and continuous data					
	Extending	understand that a time series is a series of data points typically spaced over uniform time intervals					
		plot and interpret time-series graphs					
		use a time-series graph to predict a subsequent value					
		understand that if data points are joined with a line then the line will not represent actual values but will show a trend					

							-
Unit 7: Sequences							
$\begin{aligned} & \boxed{4} \\ & \stackrel{y}{\infty} \\ & \stackrel{1}{0} \\ & \underset{4}{1} \end{aligned}$	Developing	generate linear sequences					
		work out the value of the nth term of a linear sequence for any given value of n					
		generate sequences with a given term-to-term rule					
		generate a sequence where the nth term is given					
		work out the value of the nth term of any sequence for any given value of n					
		generate simple sequences derived from diagrams and complete a table of results that describes the pattern shown by the diagrams					
		describe how a sequence continues.					
	Securing	solve simple problems involving arithmetic progressions					
		work with Fibonacci-type sequences (rule will be given)					
		know how to continue the terms of a quadratic sequence					
		work out the value of a term in a geometrical progression of the form r^{n} where n is an integer >0					
	Extending	work out the value of the nth term of a sequence for any given value of n.					

Unit 8: Circumference and Area

					管		-
Unit 9: Perimeter and Area							
	Developing	know the terms face, edge and vertex (vertices)					
		identify and name common solids, for example cube, cuboid, prism, cylinder, pyramid, cone and sphere					
		understand that cubes, cuboids, prisms and cylinders have uniform areas of cross-section					
		recall and use the formulae for the area of a rectangle, triangle, parallelogram and trapezium					
		work out the area of a rectangle and triangle					
		work out the perimeter of a rectangle					
		calculate the perimeter of shapes drawn on a grid					
		calculate the perimeter of simple shapes					
		calculate the perimeter of compound shapes made from two or more rectangles					
		calculate the perimeter of shapes made from triangles and rectangles					
	Securing	work out the area of a parallelogram					
		work out the area of a trapezium					
		calculate the area of shapes made from triangles and rectangles					
		calculate the area of compound shapes made from two or more rectangles, for example an L shape or T shape					
		calculate the area of shapes drawn on a grid					
		calculate the area of simple shapes					
		work out the surface area of nets made up of rectangles and triangles					
		recall and use the formula for the volume of a cube or cuboid					
		recall and use the formula for the volume of a cylinder					
		recall and use the formula for the volume of a prism					
		work out the volume of a cube or cuboid					
		work out the volume of a cylinder					
		work out the volume of a prism, for example a triangular prism					
	Extending	work out the surface area of spheres, pyramids and cones					
		work out the surface area of compound solids constructed from cubes, cuboids, cones, pyramids, cylinders, spheres and hemispheres					
		work out volume of spheres, pyramids and cones					
		work out the volume of compound solids constructed from cubes, cuboids, cones, pyramids, cylinders, spheres and hemispheres					
		solve real-life problems using known solid shapes					

