GCSE Physics: what you need to know I can explain why force is a vector quantity. I can explain what is meant by the **weight** of an object. I can name the factors that affect the **weight** of an object. ## Forces and motion - 1 H: 117 H: 120 O: 146 H: 120 O: 1<u>46</u> | 7 | | | | | | | |--|--------------------------|------------------|----------|----------|------------------------|------------------------------| | Describing motion along a line | l can do this
already | Covered in class | Strength | Weakness | l have
revised this | Book
references | | I can explain the difference between distance and displacement. | | | | | | H:
O: 114 | | I can explain what is meant by a scalar quantity and gives examples. | | | | | | H: 148
O: 114 | | I can explain what is meant by a vector quantity and gives examples. | | | | | | H: 148
O: 114 | | I can explain what is meant by the speed of an object. | | | | | | H: 148 | | I can give typical speeds for a person who is walking, running or cycling. | | | | | | H: 147 | | I can describe factors that affect the speed of someone who is walking, running or cycling. | | | | | | | | I can <u>recall</u> the equation for the average speed of a moving object. | | | | | | H: 148
O: 134 | | I can explain what is meant by velocity . | | | | | | H: 149
O: 136 | | I can describe a situation where the speed of an object stays the same but its velocity changes. | | | | | | H: 149
O: 136 | | I can draw distance – time graphs to show an object that is a) travelling at a constant speed, b) stationary, c) speeding up and d) slowing down. | | | | | | H: 149 & 150
O: 135 | | I can explain what information is given by the gradient of a distance – time graph. | | | | | | H: 150
O: 134 | | I can explain how to find the gradient a distance – time graph that is curved. | | | | | | H: 150
O: 140 | | I can <u>recall</u> the equation to calculate the <mark>acceleration</mark> of an object. | | | | | | H: 152
O: 137 | | I can estimate typical values for 'everyday accelerations' (such as a car decelerating during an accident). | | | | | | | | I can draw velocity – time graphs to show an object that is a) travelling at a constant speed, b) stationary, c) speeding up and d) slowing down. | | | | | | H: 152
O: 136 & 139 | | I can use a velocity – time graph to find the acceleration of an object. | | | | | | H: 152
O: 138 | | I can use a velocity – time graph to find the distance travelled by an object. | | | | | | H: 153
O: 139 | | Triple Science PHYSICS only: I can draw a velocity – time graph for a falling object (such as a skydiver); interpret the graph to describe the motion of the object; explain what is meant by the terminal velocity of the object; explain the shape of the graph using forces ideas. | | | | | | H: 156 & 157
O: 146 & 147 | | Forces and their interactions | | | | | | | | I understand that a force is a push or a pull. | | | | | | H: 118 | | I understand that forces can be divided into contact and non-contact forces. | | | | | | H: 119
O: 116 | | I can give examples of contact forces. | | | | | | H: 119 | | I can give examples of non-contact forces. | | | | | | H: 119 | | Forces and their interactions continued | l can do this
already | Covered in class | Strength | Weakness | I have
revised this | Book
references | |---|--------------------------|------------------|----------|----------|------------------------|------------------------------| | I can <u>recall</u> the equation to calculate the weight of an object. | | | | | | H: 120
O: 146 | | I can explain what is meant by the centre of mass of an object. | | | | | | H: 120
O: 124 & 125 | | I understand that the total force acting on an object is called the resultant force . | | | | | | H: 120
O: 118 | | I can draw diagrams to show the forces acting on an object and calculate the resultant force. | | | | | | H: 121 & 122
O: 119 | | I can name the forces on a falling object (such as a skydiver). | | | | | | | | I can describe how the forces on a falling object change as the object's speed increases. | | | | | | | | I understand that two or more forces on an object may cause it to stretch or compress . | | | | | | H: 125 & 126
O: 158 | | I can explain what is meant when an object is described as elastic. | | | | | | H: 126
O: 158 | | I can sketch a graph to show how the extension of a spring is affected by the size of the stretching force. I understand what is meant by the description 'extension is directly proportional to force'; I can explain what is meant by the limit of proportionality. | | | | | | H: 127 & 128
O: 158 & 159 | | I can explain what is meant by the spring constant of a particular spring. | | | | | | H: 126
O: 158 | | I can <u>recall</u> the <u>equation that links the extension (or compression) of a spring to the stretching force</u> . | | | | | | H: 126
O: 159 | | I can calculate the spring constant of a particular spring. | | | | | | H: 126 | | I can interpret graphs that show extension against stretching force. | | | _ | | | | | I can calculate the elastic potential energy stored by a stretched (or compressed) spring (Note: you will be given this equation). | | | | | | H: 126
O: 13 | **Book** H = *Physics* by England and Whitney references: (published by Hodder) O = *Physics* by Breithaupt (published by Oxford) ## Equations you must learn | Average speed | | |--|--| | Acceleration | | | Weight | | | Equation that links force, extension and the spring constant | |